Andrzej Myczko, Renata Myczko, Tomasz Kołodziejczyk, Renata Golimowska, Jakub Lenarczyk, Zygmunt Janas, Andrzej Kliber, Jerzy Karłowski, Mirosława Dolska

BUDOWA I EKSPLOATACJA BIOGAZOWNI ROLNICZYCH
Poradnik dla inwestorów zainteresowanych budową biogazowni rolniczych

Redakcja naukowa
prof. dr hab. inż. Andrzej Myczko

Warszawa – Poznań, 2011
Wydawnictwo ITP
Spis treści

WSTĘP – cele polityki wykorzystania biomasy rolniczej do konwersji w prąd i ciepło (prof. dr hab. inż. Andrzej Myczko) ............................................................................................................. 7

1. PROCES FERMENTACJI BEZTLENOWEJ  (mgr Renata Myczko, dr inż. Tomasz Kołodziejczyk) ............................................................................................................. 10
   1.1. Środowisko reakcji .............................................................................................................................. 11
   1.1.1. Parametry środowiska ..................................................................................................................... 12
   1.1.2. Parametry procesu ............................................................................................................................. 13
   1.2. Literatura ............................................................................................................................................. 15

2. KATEGORIE I ZASADY DOBORU SUBSTRATÓW DO INSTALACJI (mgr Renata Myczko, dr inż. Tomasz Kołodziejczyk) ................................................................. 16
   2.1. Definicje i klasyfikacja substratów ...................................................................................................... 16
   2.1.1. Substraty strategiczne ....................................................................................................................... 18
   2.1.2. Kosubstraty ...................................................................................................................................... 18
   2.1.3. Substraty utylizacyjne ...................................................................................................................... 18
   2.2. Zasady doboru substratów do instalacji .............................................................................................. 19
   2.3. Zasady komponowania mieszanin fermentacyjnych ............................................................................ 21
   2.4. Literatura ............................................................................................................................................. 23

3. METODY SZACOWANIA WYDAJNOŚCI SUBSTRATÓW I MIESZANIN FERMENTACYJNYCH (mgr Renata Myczko, dr inż. Tomasz Kołodziejczyk) ......................................................... 24
   3.1. Metody projektowania wydajności ...................................................................................................... 24
   3.2. Metody szacowania wydajności substratów ...................................................................................... 25
   3.2.1. Metoda tabelaryczna ...................................................................................................................... 25
   3.2.2. Metoda Baserga .............................................................................................................................. 26
   3.2.3. Metoda oceny biogazodochodowości substratu ............................................................................ 30
   3.3. Metoda oceny biogazodochodowości mieszaniny .............................................................................. 30
   3.4. Literatura ............................................................................................................................................. 32

4. PRZYKŁADOWE ROZWIĄZANIA BIOGAZOWNI (mgr inż. Renata Golimowska, dr inż. Tomasz Kołodziejczyk) ........................................................................................................ 33

5. ANALIZA DOSTĘPNOSTI SUROWCÓW DLA WYBRANYCH LOKALIZACJI (mgr inż. Renata Golimowska) ............................................................................................................. 38
   5.1. Szacowanie dostępności surowców .................................................................................................... 39
   5.2. Wywiad środowiskowy ....................................................................................................................... 43
   5.3. Metody określania lokalizacji biogazowi pod kątem kosztów transportu surowca ................................ 43
   5.4. Literatura ............................................................................................................................................. 46
6. ETAPY REALIZACJI BUDOWY BIOGAZOWNI ROLNICZEJ  
(mgr inż. Renata Golimowska) ....................................................................... 47
6.1. Ocena lokalizacji ..................................................................................... 47
6.2. Forma prawna ......................................................................................... 48
6.3. Studium wykonalności ............................................................................. 49
6.4. Uzyskanie niezbędnych pozwoleń ........................................................... 50
6.5. Budowa instalacji i rozruch biogazowni .................................................... 52
6.6. Uzyskanie akceptacji lokalnej społeczności ............................................. 54
6.7. Zawieranie niezbędnych umów ................................................................ 54
6.8. Literatura ................................................................................................. 56

7. WYKORZYSTANIE BIOGAZU W UKŁADACH KOGENERACYJNYCH I 
TRIGENERACYJNYCH (mgr inż. Jakub Lenarczyk) ...................................... 57
7.1. Rozproszone układy kogeneracyjne ........................................................ 57
7.2. Trigeneracja ............................................................................................ 58
7.3. Podstawy prawne kogeneracji ................................................................... 58
7.4. Definicje podstawowych pojęć ............................................................... 58
7.5. Obowiązki operatora systemu elektroenergetycznego ............................ 59
7.6. Koncesjonowanie .................................................................................... 59
7.7. Świadectwa pochodzenia ........................................................................ 59
7.8. Główne elementy układu kogeneracyjnego ............................................. 61
  7.8.1. Silniki tłokowe .............................................................................. 61
  7.8.2. Turbiny gazowe ............................................................................ 63
  7.8.3. Silnik Stirlinga .............................................................................. 67
  7.8.4. Układ odzysku ciepła........................................................................ 69
7.9. Zasady doboru układu kogeneracyjnego.................................................. 70
7.10. Literatura ............................................................................................... 72

8. UKŁAD HYBRYDOWY Z OGNIWEM PALIOWYM DO GENERACJI 
ENERGII ELEKTRYCZNEJ I CIEPŁA, Jako element rozproszonego systemu energetycznego (inż. Zygmunt Janas) .......... 74
8.1. Zasada działania ogniwa paliwowego ...................................................... 74
8.2. Budowa ogniwa paliwowego .................................................................. 75
8.3. Rodzaje ogniw paliowych ..................................................................... 77
8.4. Rodzaje stosowanych ogniw paliowych w praktyce ............................... 78
8.5. Zalety i wady ogniw paliowych ............................................................. 78
8.6. Zastosowania ogniw paliowych ............................................................. 79
8.7. Ogniwa paliwowe a energia odnawialna ............................................... 80
8.8. Podsumowanie ...................................................................................... 84
8.9. Literatura ............................................................................................... 84

9. OCENA WPŁYWU ROZPROSZONEGO UKŁADU ENERGETYCZNEGO 
NA ŚRODOWISKO WRAZ Z OCENĄ SKUTKÓW EKONOMICZNYCH  
(dr inż. Andrzej Kliber, dr inż. Mirosława Dolska) .................................. 85
9.1. Oddziaływanie energetyki rozproszonej na gatunki i siedliska 
objęte ochroną w ramach obszarów NATURA 2000 .............................. 92
9.2. Oddziaływanie energetyki rozproszonej na klimat ................................. 92
9.3. Oddziaływanie energetyki rozproszonej na faunę i florę ......................... 93
9.4. Oddziaływanie energetyki rozproszonej na krajobraz i dziedzictwo kulturowe ........................................................................................................ 93
9.5. Oddziaływanie energetyki rozproszonej na jakość powietrza (emisje tlenków siarki i azotu, pyłów) ................................................................ 93
9.6. Oddziaływanie energetyki rozproszonej na klimat akustyczny ................. 94
9.7. Oddziaływanie energetyki rozproszonej na wody podziemne, powierzchniowe i główne zbiorniki wód podziemnych ................................. 94
9.8. Podsumowanie ....................................................................................... 94
9.9. Literatura ............................................................................................... 95

10. BEZPIECZEŃSTWO PROCESOWE INSTALACJI BIOGAZOWEJ
    W GOSPODARSTWIE ROLNYM (mgr inż. Jerzy Karłowski) ......................... 96
10.1. Definicje ............................................................................................... 96
10.2. Bezpieczeństwo osobiste i procesowe .................................................... 98
10.3. Zagrożenia technologicznie podczas eksploatacji biogazowni ................. 99
    10.3.1. Wybuchowość .................................................................................. 99
    10.3.2. Korozja niskotemperaturowa ......................................................... 104
10.4. Zagrożenie dla zdrowia i życia człowieka .............................................. 107
10.5. System zarządzania bezpieczeństwem procesowym ................................. 109
10.6. Oceny zagrożeń .................................................................................... 110
10.7. Praktyczne zastosowanie kryteriów akceptowalności ryzyka w ocenie ryzyka instalacji procesowych .............................................................. 112
10.8. Przykłady rozwiązań technicznych zapewniających bezpieczeństwo procesowe w biogazowniach ................................................................. 114
    10.8.1 Normy techniczne dla biogazowni .................................................. 114
    10.8.2 Pożar/wybuch (eksplozja) ................................................................. 115
    10.8.3 Regulacje prawne dotyczące bezpieczeństwa procesowego............. 118
10.9. Literatura .............................................................................................. 121

11. PODSTAWOWE RODZAJE INSTALACJI BIOGAZOWYCH
    (prof. dr hab. inż. Andrzej Myczko) .......................................................... 122
    Załącznik 1 .............................................................................................. 130
    Załącznik 2 .............................................................................................. 134
    Załącznik 3 .............................................................................................. 137